
Annotated Bibliography: An Emerging Literature

What follows is a noncomprehensive bibliography of software security pub-
lications. This list is heavily biased toward recent publications. The refer-
ences here can serve as a springboard to the wider literature. Below each
reference is a brief description of the work and its place in the literature.
All opinions are mine.

The bibliography is divided into three sections. First is a very short list
of required reading (the top five list for software security). Second is a com-
plete list of all references cited in this book. Third is a list of other important
software security references not otherwise mentioned in this book. There are
overlaps only between the required reading list and the other two lists.

Required Reading: The Top Five

This is a completely biased list of the top five publications to read in soft-
ware security (presented in alphabetical order). If you have time to read only
a handful of stuff, read everything on this list first.

1. [Anderson 2001] Ross Anderson. Security Engineering: A Guide to
Building Dependable Distributed Systems. John Wiley and Sons, New
York, 2001. <http://www.cl.cam.ac.uk/~rja14/book.html>

This is probably the best security book on the market. If you can
buy only one other book relevant to software security, buy this one.
Security Engineering is about building systems that remain depend-
able in the face of malicious attack, unintentional error, or accident.
Anderson’s treatment focuses on the tools, processes, and methods
needed to design, implement, and test complete systems and to adapt
existing systems as their environment evolves.

Annotated Bibliography
and References

Those who cannot remember the past
are condemned to repeat it.

George Santayana

13

299

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 299

2. [Hoglund and McGraw 2004] Greg Hoglund and Gary McGraw.
Exploiting Software: How to Break Code. Addison-Wesley, Boston,
MA, 2004. <http://www.exploitingsoftware.com>

One of my three software security books. Exploiting Software goes
way beyond the script kiddie hacking basics by describing the soft-
ware attacker’s toolkit and how it is commonly used by bad guys.
This book includes hard-core information on real attacks against real
software. It also introduces the notion of attack patterns.

3. [Howard and LeBlanc 2003] Michael Howard and David LeBlanc.
Writing Secure Code, 2nd edition. Microsoft Press, Redmond, WA,
2003. Mike Howard’s blog serves as the de facto site for this book
<http://blogs.msdn.com/michael_howard/>.

Writing Secure Code is a very good treatment of software security
with an emphasis on code and implementation problems (bugs).
The introduction of the STRIDE model is particularly noteworthy.
If you’re serious about software security, you need to read this
book.

4. [Saltzer and Schroeder 1975] Jerome Saltzer and Michael Schroeder.
“The Protection of Information in Computer Systems,” Proceedings
of the IEEE 9(63), September 1975, pp. 1278–1308. <http://web.mit.
edu/Saltzer/www/publications/protection/>

An absolutely classic paper that everyone cites but few actually
read. This paper introduces and discusses a number of central security
principles. The paper itself is a pithy, short, essential read. (By the
way, a treatment of the principles idea related to software security
can be found in Building Secure Software.)

5. [Viega and McGraw 2001] John Viega and Gary McGraw.
Building Secure Software: How to Avoid Security Problems the
Right Way. Addison-Wesley, Boston, MA, 2001. <http://www.
buildingsecuresoftware.com/>

One of my three software security books. Building Secure Software
launched the field of software security. Though there is plenty of code
in BSS, the book itself is really a philosophical treatment introducing
the idea of building security in.

References Cited in Software Security: Building Security In

A complete alphabetical listing of all references in this book, including those
references mentioned in footnotes.

300 Chapter 13 Annotated Bibliography and References

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 300

[Abbott et al. 1976] Robert Abbott, Janet Chin, James Donnelley, William
Konigsford, Shigeru Tokubo, and Douglas Webb. “Security Analysis and
Enhancements of Computer Operating Systems,” NBSIR 76-1041, National
Bureau of Standards, ICST, Washington, DC, 1976.

Abbott introduces the RISOS taxonomy of computer security problems
related to operating systems. Very early work in understanding security
vulnerabilities.

[Alexander 2003] Ian Alexander. “Misuse Cases: Use Cases with Hostile
Intent,” IEEE Software 20(1), January/February 2003, pp. 58–66.

Alexander advocates using misuse and use cases together to conduct
threat and hazard analysis during requirements analysis.

[Anderson 2001] Ross Anderson. Security Engineering: A Guide to Building
Dependable Distributed Systems. John Wiley and Sons, New York, 2001.

See entry in Required Reading.
[Arkin, Stender, and McGraw 2005] Brad Arkin, Scott Stender, and Gary
McGraw. “Software Penetration Testing,” IEEE Security & Privacy 3(1),
2005, pp. 84–87.

One of the original BSI articles from IEEE Security & Privacy magazine
that sparked this book. See <http://www.computer.org/security> for sub-
scription information.

[Ashcraft and Engler 2002] Ken Ashcraft and Dawson Engler. “Using
Programmer-Written Compiler Extensions to Catch Security Holes,” Pro-
ceedings of the IEEE Symposium on Security and Privacy, Oakland, CA,
IEEE Computer Society Press, 2002, pp. 131–147.

Engler’s work on static analysis is now being commercialized by Cover-
ity. This academic paper describes the bug-finding technology developed
at UC Berkeley.

[Aslam 1995] Taimur Aslam. “A Taxonomy of Security Faults in the UNIX
Operating System.” Master’s Thesis, Purdue University, 1995.

An early taxonomy focused on UNIX security problems.
[Ball and Rajamani 2001] Tom Ball and Sriram Rajamani. “Automatically
Validating Temporal Safety Properties of Interfaces,” Proceedings of
the 8th International SPIN Workshop on Model Checking of Software,
Springer Lecture Notes in Computer Science, vol. 2057, 2001,
pp. 103–122.

The SLAM model checker uses predicate abstraction to examine
program safety properties. Tom Ball now runs a research group at
Microsoft.

Annotated Bibliography: An Emerging Literature 301

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 301

[Barnum and McGraw 2005] Sean Barnum and Gary McGraw. “Knowl-
edge for Software Security,” IEEE Security & Privacy 3(2), 2005,
pp. 74–78.

One of the original BSI articles from IEEE Security & Privacy magazine
that sparked this book. See <http://www.computer.org/security> for sub-
scription information.

[Bisbey and Hollingworth 1978] Richard Bisbey and Dennis Hollingworth.
“Protection Analysis Project Final Report,” ISI/RR-78-13, DTIC AD
A056816, USC/Information Sciences Institute, 1978.

A description of the Protection Analysis (PA) project meant to enable
anybody (with or without any knowledge about computer security) to
discover security errors in a system by using a pattern-directed
approach. Formalized patterns were used to search for corresponding
errors. The PA project was the first project to explore automation of
security defect detection.

[Bishop 2003] Matt Bishop. Computer Security: Art and Science. Addison-
Wesley, Boston, MA, 2003.

A decent though overly formal textbook on computer security. Matt
Bishop is one of the pioneers of software security. Echoes of his philoso-
phy of building security in are evident in this book.

[Bishop and Dilger 1996] Matt Bishop and Mike Dilger. “Checking for
Race Conditions in File Accesses,” Computing Systems 9(2), 1996,
pp. 131–152.

Matt Bishop’s seminal paper explains a simple static analysis tool for
detecting time-of-check–time-of-use (TOCTOU) defects.

[Bush, Pincus, and Sielaff 2000] William Bush, Jonathan Pincus, and David
Sielaff. “A Static Analyzer for Finding Dynamic Programming Errors,” Soft-
ware Practice and Experience, 30(7), June 2000, pp. 775–802.

The only paper published about Prefix, the complicated precursor to
Prefast invented by Jon Pincus and used internally at Microsoft for
many years.

[Cavusoglu, Mishra, and Raghunathan 2002] Huseyin Cavusoglu, Birendra
Mishra, and Srinivasan Raghunathan. “The Effect of Internet Security
Breach Announcements on Market Value of Breached Firms and Internet
Security Developers,” Technical Report from the University of Texas at
Dallas School of Management, February 2002.

A minor academic study indicating a link between security events and
negative stock price movements.

302 Chapter 13 Annotated Bibliography and References

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 302

[Chen and Wagner 2002] Hao Chen and David Wagner. “MOPS: An Infra-
structure for Examining Security Properties of Software,” Proceedings of
the 9th ACM Conference on Computer and Communications Security
(CCS2002), Washington, DC, ACM Press, 2002, pp. 235–244.

MOPS takes a model-checking approach to look for violations of tem-
poral safety properties. Developers can model their own safety proper-
ties, and some have used the tool to check for privilege management
errors, incorrect construction of chroot jails, file access race conditions,
and ill-conceived temporary file schemes.

[Chess 2002] Brian Chess. “Improving Computer Security Using
Extended Static Checking,” Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA, IEEE Computer Society Press, 2002,
pp. 118–130.

The Eau Claire tool uses a theorem prover to create a general
specification-checking framework for C programs. It can help find
common security problems like buffer overflows, file access race con-
ditions, and format string bugs. Developers can use specifications to
ensure that function implementations behave as expected.

[Chess and McGraw 2004] Brian Chess and Gary McGraw. “Static Analysis
for Security,” IEEE Security & Privacy 2(6), 2004, pp. 76–79.

One of the original BSI articles from IEEE Security & Privacy magazine
that sparked this book. See <http://www.computer.org/security> for sub-
scription information.

[Cheswick and Bellovin 1994] Bill Cheswick and Steve Bellovin.
Firewalls and Internet Security, 1st edition. Addison-Wesley, Reading,
MA, 1994.

The very first edition of a classic security tome. See the next entry for
up-to-date information; especially note that the new edition is coau-
thored with Avi Rubin.

[Cheswick, Bellovin, and Rubin 2003] Bill Cheswick, Steve Bellovin, and
Avi Rubin. Firewalls and Internet Security, 3rd edition. Addison-Wesley,
Boston, MA, 2003.

A classic computer security book, now available in a revised and
updated edition featuring Avi Rubin as coauthor.

[Christey 2005] Steven Christey. “PLOVER—Preliminary List of Vulnera-
bility Examples for Researchers,” NIST Draft, August 2005 (unpublished).

An unpublished attempt to categorize the CVE vulnerabilities into some
kind of bottom-up taxonomy.

Annotated Bibliography: An Emerging Literature 303

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 303

[Das, Lerner, and Seigle 2002] Manuvir Das, Sorin Lerner, and Mark
Seigle. “ESP: Path-Sensitive Program Verification in Polynomial Time,”
Proceedings of the ACM Conference on Programming Language Design
and Implementation (PLDI2002), Berlin, Germany, ACM Press, 2002,
pp. 57–68.

The static analysis tool ESP is a large-scale property verification
approach.

[Davis et al. 2004] Noopur Davis, Samual Redwine, Gerlinde Zibuski, Gary
McGraw, and Watts Humphrey. “Summary of National Cyber Security
Summit Subgroup Report: Processes for Producing Secure Software.”
April 2004.

A committee-produced paper describing the software security problem
used to set national policy. The touchpoints were prominently included
in this paper. The complete report can be found here: <http://www.
cyberpartnership.org>.

[Engler et al. 2000] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth
Hallem. “Checking System Rules Using System-Specific, Programmer-
Written Compiler Extensions,” Proceedings of the Symposium on Operat-
ing System Design and Implementation (OSDI), San Diego, CA, USENIX
Association, October 2000.

This paper introduces a set of small extensions that were used to find
roughly 500 bugs in Linux, OpenBSD, and Xok. The engine behind
Coverity is described in this paper.

[Evans et al. 1994] David Evans, John Guttag, Jim Horning, and Yang
Meng Tan. “LCLint: A Tool for Using Specifications to Check Code,”
Proceedings of the SIGSOFT Symposium on the Foundations of
Software Engineering, New Orleans, LA, ACM Press, December 1994,
pp. 87–96.

LCLint is introduced, a simple tool that accepts ANSI C programs and
some annotations to find and report inconsistencies.

[Fagan 1976] Michael Fagan. “Design and Code Inspections to Reduce
Errors in Program Development,” IBM Systems Journal 15(3), 1976,
pp. 182–211.

The seminal work on manual code inspection.
[Farmer and Venema 2005] Dan Farmer and Wietse Venema. Forensic
Discovery. Addison-Wesley, Boston, MA, 2005.

Dan Farmer and Wietse Venema (purveyors of SATAN and other great
security stuff) recently released this long-awaited, excellent new tome on
forensics.

304 Chapter 13 Annotated Bibliography and References

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 304

[Foster, Terauchi, and Aiken 2002] Jeffrey Foster, Tachio Terauchi, and Alex
Aiken. “Flow-Sensitive Type Qualifiers,” Proceedings of the ACM Confer-
ence on Programming Language Design and Implementation (PLDI2002),
Berlin, Germany, ACM Press, 2002, pp. 1–12.

One of the many papers on CQual. Inspired by Perl’s taint mode, CQual
uses type qualifiers to perform a taint analysis, which detects format
string vulnerabilities in C programs. CQual requires a programmer to
annotate a few variables as either tainted or untainted and then uses
type inference rules (along with pre-annotated system libraries) to prop-
agate the qualifiers. Once the qualifiers are propagated, the system can
detect format string vulnerabilities by type checking.

[Geer 1998] Dan Geer. “Risk Management Is Where the Money Is,” The
Digital Commerce Society of Boston, Boston, MA, November 1998. This
paper has been widely reprinted, including RISKS 20.06 <http://catless.ncl.
ac.uk/Risks/20.06.html>.

An early discussion of the criticality of risk management to security. This
paper provides a reasonable overview and history.

[Geer et al. 2003] Dan Geer, Rebecca Bace, Peter Gutmann, Perry Metzger,
Charles Pfleeger, John Quarterman, and Bruce Schneier. “CyberInsecurity:
The Cost of Monopoly, How the Dominance of Microsoft’s Products Poses
a Risk to Security.” Published on the Web by the Computer & Communica-
tions Industry Association (CCIA), September 2003. <http://www.ccianet.
org/papers/cyberinsecurity.pdf>

The famous “monoculture” paper that caused Dan Geer to be fired from
@stake. Computer security is so important that it is becoming political.
This paper argues that by dominating the software market so com-
pletely, Microsoft is putting security at risk.

[Ghosh, O’Connor, and McGraw 1998] Anup Ghosh, Tom O’Connor, and
Gary McGraw. “An Automated Approach for Identifying Potential Vulnera-
bilities in Software,” Proceedings of the IEEE Symposium on Security and
Privacy, Oakland, CA, IEEE Computer Society Press, May 1998, pp. 104–114.

FIST is a tool for software fault injection for security. This work inspired
a number of commercial dynamic testing tools.

[Gilb and Graham 1993] Tom Gilb and Dorothy Graham. Software Inspec-
tion. Addison-Wesley, Reading, MA, 1993.

After Fagan [1976], this book is the classic text on code review.
[Graff and van Wyk 2003] Mark Graff and Kenneth van Wyk. Secure
Coding: Principles and Practices. O’Reilly and Associates, Sebastopol,
CA, 2003.

Annotated Bibliography: An Emerging Literature 305

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 305

One of the key books in software security, aimed at network and opera-
tions security types. This book explains the importance of software
security to computer security people.

[Gutmann 2004] Peter Gutmann. “Simplifying Public Key Management,”
IEEE Computer 37(2), February 2004, pp. 101–103.

A paper explaining why many security errors exist because of user prob-
lems caused by overly complicated technology (ever try to use early ver-
sions of pgp?). Simplicity for users and consumers of software and
software security technology is essential.

[Henzinger et al. 2003] Thomas Henzinger, Ranjit Jhala, Rupak Majumdar,
and Gregoire Sutre. “Software Verification with BLAST,” Proceedings of the
10th International Workshop on Model Checking of Software, Springer
Lecture Notes in Computer Science, vol. 2648, 2003, pp. 235–239.

A paper explaining the BLAST model checker, which uses predicate
abstraction to examine program safety properties.

[Hoglund and Butler 2005] Greg Hoglund and James Butler. Rootkits: Sub-
verting the Windows Kernel. Addison-Wesley, Boston, MA, 2005.

The first complete book on the important topic of rootkits. Rootkits are
the apex of the attacker’s toolkit, and understanding how they really
work is essential for today’s software security professionals. Better get
this book.

[Hoglund and McGraw 2004] Greg Hoglund and Gary McGraw. Exploit-
ing Software: How to Break Code. Addison-Wesley, Boston, MA, 2004.
<http://www.exploitingsoftware.com>

See entry in Required Reading.
[Hope, McGraw, and Anton 2004] Paco Hope, Gary McGraw, and Annie
Anton. “Misuse and Abuse Cases: Getting Past the Positive,” IEEE Security
& Privacy 2(3), 2004, pp. 32–34.

One of the original BSI articles from IEEE Security & Privacy magazine
that sparked this book. See <http://www.computer.org/security> for sub-
scription information.

[Hovemeyer and Pugh 2004] Dave Hovemeyer and William Pugh. “Finding
Bugs Is Easy,” Companion of the 19th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA),
Vancouver, Canada, ACM Press, 2004.

Bill Pugh’s FindBugs program is a very popular open source code analy-
sis system for Java bytecode.

[Howard and LeBlanc 2002] Michael Howard and David LeBlanc. Writing
Secure Code, 1st edition. Microsoft Press, Redmond, WA, 2002.

See entry in Required Reading.

306 Chapter 13 Annotated Bibliography and References

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 306

[Howard and LeBlanc 2003] Michael Howard and David LeBlanc. Writing
Secure Code, 2nd edition. Microsoft Press, Redmond, WA, 2003.

See entry in Required Reading.
[Howard, LeBlanc, and Viega 2005] Michael Howard, David LeBlanc, and
John Viega. 19 Deadly Sins of Software Security. McGraw-Hill Osborne
Media, New York, 2005.

This book discusses in detail 19 serious software security problems. The
19 sins are not presented in a hierarchy.

[Howard and Lipner 2003] Michael Howard and Steve Lipner. “Inside the
Windows Security Push,” IEEE Security & Privacy 1(1), 2003, pp. 57–61.

A description of Microsoft’s Trustworthy Computing Initiative one year
after the effort began. Microsoft’s work provides a critical case study for
the adoption of software security best practices in a large enterprise.

[Jurjens 2001] Jan Jurjens. “Towards Secure Systems Development with
UMLsec,” Proceedings of FASE’01. Springer Lecture Notes in Computer
Science, 2001.

UMLsec is one way of thinking about security at the design level. This
work is overly focused on security features.

[Kernighan and Ritchie 1988] Brian Kernighan and Dennis Ritchie. The
C Programming Language, 2nd edition. Prentice Hall, New York, 1988.

The C bible. Unfortunately, this language has serious security problems.
The string functions are particularly notorious for introducing buffer
overflow conditions. And gets()? Ouch. The best software security
advice about C is “don’t use it.”

[Koziol et al. 2004] Jack Koziol, David Litchfield, Dave Aitel, Chris Anley,
Sinan “noir” Eren, Neel Mehta, and Riley Hassell. The Shellcoder’s Hand-
book: Discovering and Exploiting Security Holes. John Wiley & Sons, New
York, 2004.

One of the books helping to describe (in great technical detail) how soft-
ware attacks work. This book makes an excellent companion to
Exploiting Software. This is a black hat must-read.

[Landwehr, Bull, and McDermott 1993] Carl Landwehr, Alan Bull, and
John McDermott. “A Taxonomy of Computer Program Security Flaws,
with Examples,” Technical Report NRL/FR/5542—93/9591, United States
Navy, Naval Research Laboratory, November 1993.

An important early taxonomy of computer security problems. This
work set the stage for an escalation of excellent computer security
research in the mid-1990s.

[Larochelle and Evans 2001] David Larochelle and David Evans. “Statically
Detecting Likely Buffer Overflow Vulnerabilities,” Proceedings of the 10th

Annotated Bibliography: An Emerging Literature 307

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 307

Usenix Security Symposium (USENIX’01), Washington, DC, USENIX Asso-
ciation, 2001.

Splint extends the lint concept into the security realm. By adding code
annotations, developers can enable splint to find abstraction violations,
unannounced modifications to global variables, and possible use-before-
initialization errors. Splint can also reason about minimum and maxi-
mum array bounds accesses if it is provided with function pre- and
postconditions.

[Leveson 1995] Nancy Leveson. Safeware: System Safety and Computers.
Addison-Wesley, Reading, MA, 1995.

The classic book on software safety. Safety has a number of critical lessons
to teach software security, only a few of which have been absorbed so far.

[McDermott and Fox 1999] John McDermott and Chris Fox. “Using Abuse
Case Models for Security Requirements Analysis,” Proceedings of the 15th
Annual Computer Security Applications Conference, Scottsdale, AZ, IEEE
Computer Society Press, 1999, p. 55.

The first paper on record about abuse cases.
[McGraw 1998] Gary McGraw. “Testing for Security During Development:
Why We Should Scrap Penetrate-and-Patch,” IEEE Aerospace and Elec-
tronic Systems 13(4), 1998, pp. 13–15.

A paper describing why penetrate-and-patch is a failed approach. This
paper represents some of my earliest thinking about software security.
Note that it was published in a journal devoted to very high assurance
systems (those that control aircraft).

[McGraw 2003] Gary McGraw. “From the Ground Up: The DIMACS Soft-
ware Security Workshop,” IEEE Security & Privacy 1(2), 2003, pp. 59–66.

The results of the first conference devoted entirely to software security.
This intimate workshop of around 50 people helped to crystallize and
define the emerging field of software security. Presentations and notes
from the workshop are here <http://www.cigital.com/ssw/>.

[McGraw 2004] Gary McGraw. “Software Security,” IEEE Security & Pri-
vacy 2(2), 2004, pp. 80–83.

The first of the BSI articles from IEEE Security & Privacy magazine that
sparked this book. See <http://www.computer.org/security> for subscrip-
tion information.

[McGraw 2005] Gary McGraw. “The 7 Touchpoints of Secure Software,”
Software Development, September 2005, pp. 42–43.

A popular press treatment of the touchpoints that appeared in Software
Development magazine.

308 Chapter 13 Annotated Bibliography and References

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 308

[McGraw and Felten 1996] Gary McGraw and Edward Felten. Java Secu-
rity: Hostile Applets, Holes, and Antidotes. John Wiley & Sons, New York,
1996.

The first book on Java security, written with Ed Felten, leader of the
Princeton Team. This book made quite a splash when it appeared. See
the next entry for Securing Java, the second edition.

[McGraw and Felten 1999] Gary McGraw and Edward Felten. Securing
Java: Getting Down to Business with Mobile Code. John Wiley & Sons,
New York, 1999. <http://www.securingjava.com/>

The second edition of my book Java Security, updated with new attacks
and advice. The complete book is available for free on the Web. Ed Fel-
ten ran the Princeton team of security researchers who consistently chal-
lenged assumptions about Java.

[McGraw and Morrisett 2000] Gary McGraw and Greg Morrisett. “Attack-
ing Malicious Code: A Report to the Infosec Research Council,” IEEE Soft-
ware 17(5), September/October 2000, pp. 33–41.

Malicious code is a side effect of bad software. This paper introduced
the trinity of trouble. This paper describes a U.S. government-sponsored
set of workshops (which I set up and chaired) meant to dig deeply into
the root causes of viruses, worms, and other nasty beasties.

[Mead and McGraw 2005] Nancy R. Mead and Gary McGraw. “A Portal
for Software Security,” IEEE Security & Privacy 3(4), 2005, pp. 75–79.

One of the original BSI articles from IEEE Security & Privacy magazine
that sparked this book. See <http://www.computer.org/security> for sub-
scription information.

[Miller et al. 1995] Barton Miller, David Koski, Cjin Lee, Vivekananda
Maganty, Ravi Murphy, Ajitkumar Natarajan, and Jeff Steidl. “Fuzz Revis-
ited: A Re-examination of the Reliability of UNIX Utilities and Services,”
Technical Report CS-TR-95-1268, University of Wisconsin, April 1995.

An excellent description of the fuzz tool, five years after it was first
introduced (by the same authors). The simple idea of sending random
input to UNIX commands and seeing what happens helped to spark
dynamic testing approaches offered on the commercial market today.

[Pincus and Baker 2004] Jon Pincus and Brandon Baker. “Beyond Stack
Smashing: Recent Advances in Exploiting Buffer Overruns,” IEEE Security
& Privacy 2(4), 2004, pp. 20–27.

An in-depth description of new buffer overflow attacks not yet com-
monly encountered in the wild. You know what that means—coming
soon to software near you. This was the best paper in a special issue of

Annotated Bibliography: An Emerging Literature 309

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 309

IEEE Security & Privacy magazine, which I edited with Ivan Arce,
devoted to attacking systems.

[Potter and McGraw 2004] Bruce Potter and Gary McGraw. “Software
Security Testing,” IEEE Security & Privacy 2(5), 2004, pp. 81–85.

One of the original BSI articles from IEEE Security & Privacy magazine
that sparked this book. See <http://www.computer.org/security> for sub-
scription information.

[Saltzer and Schroeder 1975] Jerome Saltzer and Michael Schroeder. “The
Protection of Information in Computer Systems,” Proceedings of the IEEE
9(63), September 1975, pp. 1278–1308.

See entry in Required Reading.
[Sindre and Opdahl 2000] Guttorm Sindre and Andreas Opdahl. “Eliciting
Security Requirements by Misuse Cases,” Proceedings of the 37th Inter-
national Conference on Technology of Object-Oriented Languages and Sys-
tems (TOOLS-37’00), Sydney, Australia, IEEE Press, 2000, pp. 120–131.

Sindre and Opdahl explain how to extend use case diagrams with mis-
use cases. Their basic idea is to represent the actions that systems should
prevent in tandem with those that systems should support so that secu-
rity analysis of requirements is easier.

[Stubblefield, Ioannides, and Rubin 2004] Adam Stubblefield, John Ioan-
nides, and Avi Rubin. “A Key Recovery Attack on the 802.11b Wired
Equivalent Privacy Protocol (WEP),” ACM Transactions on Information
and System Security, May 2004, pp. 319–332.

WEP is a prime example of the widespread security risk brought about
by architectural security flaws.

[Swiderski and Snyder 2004] Frank Swiderski and Window Snyder. Threat
Modeling. Microsoft Press, Redmond, WA, 2004.

The unfortunately titled book explaining how Microsoft approaches
security risk analysis. This book is worth a quick glance.

[Taylor and McGraw 2005] Dan Taylor and Gary McGraw. “Adopting a
Software Security Improvement Program,” IEEE Security & Privacy 3(3),
2005, pp. 88–91.

One of the original BSI articles from IEEE Security & Privacy magazine
that sparked this book. See <http://www.computer.org/security> for sub-
scription information.

[Tsipenyuk, Chess, and McGraw 2005] Katrina Tsipenyuk, Brian Chess,
and Gary McGraw. “Seven Pernicious Kingdoms: A Taxonomy of Software
Security Errors,” Proceedings of the NIST Workshop on Software Security

310 Chapter 13 Annotated Bibliography and References

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 310

Assurance Tools, Techniques, and Metrics (SSATTM), Los Angeles, CA,
2005.

A paper introducing the seven pernicious kingdoms and associated
phyla expounded in this book. A related BSI article from IEEE Security
& Privacy magazine is also in the works but was not published at the
time of this writing. See <http://www.computer.org/security> for sub-
scription information.

[van Wyk and McGraw 2005] Kenneth R. van Wyk and Gary McGraw.
“Bridging the Gap between Software Development and Information Secu-
rity,” IEEE Security & Privacy 3(4), 2005, pp. 64–68.

One of the original BSI articles from IEEE Security & Privacy magazine
that sparked this book. See <http://www.computer.org/security> for sub-
scription information.

[Verdon and McGraw 2004] Denis Verdon and Gary McGraw. “Risk
Analysis in Software Design,” IEEE Security & Privacy 2(4), 2004,
pp. 79–84.

One of the original BSI articles from IEEE Security & Privacy magazine
that sparked this book. See <http://www.computer.org/security> for sub-
scription information.

[Viega et al. 2000a] John Viega, J. T. Bloch, Tadyoshi Kohno, and Gary
McGraw. “ITS4: A Static Vulnerability Scanner for C and C++ Code,” Pro-
ceedings of Annual Computer Security Applications Conference, New
Orleans, LA, December 2000, pp. 257–267.

An early ITS4 publication describing a simple source code security
analysis tool. The paper includes a couple of case studies showcasing
how to use ITS4. This paper won the best paper award at ACSAC in
2000 even though it is not really all that good.

[Viega et al. 2000b] John Viega, Gary McGraw, Tom Mutdosch, and Ed Fel-
ten. “Statically Scanning Java Code: Finding Security Vulnerabilities,” IEEE
Software 17(5), September/October 2000, pp. 68–74.

A paper describing a very simple static analysis tool written by Tom dur-
ing a summer internship at Cigital. The Jscan prototype captured the
guidelines from Securing Java [McGraw and Felten 1999] in a simple
tool.

[Viega and McGraw 2001] John Viega and Gary McGraw. Building Secure
Software: How to Avoid Security Problems the Right Way. Addison-Wesley,
Boston, MA, 2001. <http://www.buildingsecuresoftware.com/>

See entry in Required Reading.

Annotated Bibliography: An Emerging Literature 311

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 311

[Voas and McGraw 1998] Jeff Voas and Gary McGraw. Software Fault
Injection: Inoculating Programs against Errors. John Wiley & Sons, New
York, 1998.

The first book in the world on software fault injection, a technology pio-
neered by Jeff Voas, cofounder of Cigital.

[Wagner et al. 2000] David Wagner, Jeffrey Foster, Eric Brewer, and
Alexander Aiken. “A First Step Towards Automated Detection of Buffer
Over-run Vulnerabilities,” Proceedings of the Year 2000 Network and
Distributed System Security Symposium (NDSS), San Diego, CA, 2000,
pp. 3–17.

Wagner describes a tool that uses constraints to scan for buffer over-
flows in C code. The paper has an excellent analysis of the buffer over-
flow problem itself. This paper won the best paper award at ISOC
NDSS in 2000 and most certainly deserved it.

[Walsh 2003] Larry Walsh. “Trustworthy Yet?” Information Security Maga-
zine, February 2003. <http://infosecuritymag.techtarget.com/2003/
feb/cover.shtml>

A skeptical look at Microsoft’s Trustworthy Computing Initiative, one
year into the program.

[Whittaker and Thompson 2003] James Whittaker and Herbert Thompson.
How to Break Software Security. Addison-Wesley, Boston, MA, 2003.

A good, simple, black-hat-related book about probing software security
through input. Whittaker is a master of compelling tools that are easy to
understand and useful at the same time.

[Wing 2003] Jeannette Wing. “A Call to Action: Look Beyond the Hori-
zon,” IEEE Security & Privacy 1(6), 2003, pp. 62–67.

Jeannette wrote this interesting paper after a summer at Microsoft being
exposed to software security in a large corporate software environment.
Software security is listed among the top three major issues to work on
in computer security.

Government and Standards Publications Cited

[IEC 61508] International Standards Organization, “IEC 61508”; Version
4.0 (1997). <http://www.iee.org>

[NIST 800-30] U.S. Federal Government, NIST Special Publication 800-30,
“Risk Management Guide for Information Technology Systems.”
<http://csrc.nist.gov/publications/nistpubs/>

[NIST 800-37] U.S. Federal Government, NIST Special Publication 800-37,

312 Chapter 13 Annotated Bibliography and References

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 312

“Guide for the Security Certification and Accreditation of Federal Infor-
mation Systems.” <http://csrc.nist.gov/publications/nistpubs/>

[NIST 800-53] U.S. Federal Government, NIST Special Publication 800-53,
“Recommended Security Controls for Federal Information Systems.”
<http://csrc.nist.gov/publications/nistpubs/>

Other Important References

There are plenty of other references not directly cited in this book that are
worth a look. Though this list is by no means complete, it can serve as a
springboard into the wider software security literature.

[Aleph1 1996] Aleph One. “Smashing the Stack for Fun and Profit,”
Phrack 49, November 1996.

A comprehensive study of classic stack-smashing attacks. This is among
the earliest papers dedicated to software security. Phrack is an excellent
black hat resource that is well worth checking out.

[Amoroso 1994] Ed Amoroso. Fundamentals of Computer Security Tech-
nology. Prentice Hall, Englewood Cliffs, NJ, 1994.

Introduction of threat trees, the Bell-LaPadula model, Biba integrity, and
other basic models. An oldie, but a goodie.

[Anderson and Kuhn 1996] Ross Anderson and Marcus Kuhn. “Tamper
Resistance—A Cautionary Note,” Proceedings of the Second Usenix Work-
shop on Electronic Commerce, Oakland, CA, USENIX Association,
November 1996, pp. 1–11. <http://www.cl.cam.ac.uk/users/rja14/
tamper.html>

Attacking smart cards with interesting, surprising attacks. This great
article shows how to think like an attacker (with your black hat on).

[Anderson and Needham 1995] Ross Anderson and Roger Needham. “Pro-
gramming Satan’s Computer,” Computer Science Today, Springer Lecture
Notes in Computer Science, vol. 1000, 1995, pp. 426–441. <http://www.cl.
cam.ac.uk/ftp/users/rja14/satan.ps.gz>

Why programming distributed systems is really hard.
[Arbaugh, Fithen, and McHugh 2000] Bill Arbaugh, Bill Fithen, and John
McHugh. “Windows of Vulnerability: A Case Study Analysis,” IEEE Com-
puter 33(12), December 2000, pp. 52–59.

Ever wonder whether patching works? This paper shows conclusively
that it doesn’t work very well at all. The most surprising result describes
how attack scripts appear to be developed well after patches are released.

Annotated Bibliography: An Emerging Literature 313

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 313

[Bell and LaPadula 1974] David Bell and Len LaPadula. “Secure Computer
Systems,” ESD-TR-73-278, Mitre Corporation; vols. I and II (November
1973), vol. III (April 1974).

A classic paper describing principals (actors) and objects in a matrix of
permissions. This is the seminal work behind access control lists and
role-based access control.

[Brooks 1995] Frederick Brooks, Jr. The Mythical Man-Month: Essays
on Software Engineering, 2nd edition. Addison-Wesley, Reading, MA,
1995.

Ever wonder why throwing more programmers at a software project
only makes things take longer? Read this great book and find out why.

[Brown 2000] Keith Brown. Programming Windows Security. Addison-
Wesley, Boston, MA, 2000.

Windows security APIs. Security features are important, too.
[Cowan et al. 1998] Crispin Cowan, Calton Pu, David Maier, Heather Hin-
ton, Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang.
“Automatic Detection and Prevention of Buffer-Overflow Attacks,” Pro-
ceedings of the 7th USENIX Security Symposium, San Antonio, TX,
USENIX Association, January 1998, pp. 63–78.

Stackguard was the clear inspiration for Microsoft’s maligned /GS flag.
Though I am not a fan of detecting or stopping buffer overflows dynam-
ically, this is a great paper.

[Denning 1998] Dorothy Denning. Information Warfare and Security,
Addison-Wesley, Reading, MA, 1998.

Possibly the ultimate black hat technique—war. This is a scary and rele-
vant book well worth comprehending.

[DOD 1985] Trusted Computer System Evaluation Criteria (“The Orange
Book”). U.S. Department of Defense, 1985.

A failed attempt, but a valiant attempt to codify security assurance. The
problem with this approach to security is that computer systems are
extensible, networked, and way more complicated than ever.

[Ford 1994] Warwick Ford. Computer Communications Security: Prin-
ciples, Standard Protocols, and Techniques. Prentice Hall, Englewood Cliffs,
NJ, 1994.

Network and communications security. Basic coverage of crypto, CIA,
and some aspects of privacy. The Open Systems Interconnection (OSI)
security architecture explained.

[Forrest, Hofmeyr, and Somayaji 1997] Stephanie Forrest, Steven Hofmeyr,
and Anil Somayaji. “Computer Immunology,” Communications of the
ACM 40(10), October 1997, pp. 88–96.

314 Chapter 13 Annotated Bibliography and References

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 314

Why computer security might benefit by analogy with biology.
[Gamma et al. 1995] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns. Addison-Wesley, Reading, MA, 1995.

This is an instrumental software architecture book. This book led to the
idea of attack patterns.

[Garfinkel and Spafford 1996] Simson Garfinkel and Gene Spafford. Practi-
cal UNIX and Internet Security, 2nd edition. O’Reilly, Sebastopol, CA, 1996.

A classic tome on UNIX security. UNIX root must-read, but applicable
widely to other operating systems.

[Gasser 1988] Morrie Gasser. Building a Secure Computer System. Van
Nostrand Reinhold, New York, 1988.

A very old but interesting read that anticipates the philosophy of build-
ing security in some twenty years earlier.

[Goldberg and Wagner 1996] Ian Goldberg and Dave Wagner. “Random-
ness and the Netscape Browser,” Dr. Dobbs Journal, no. 243, January 1996,
pp. 66–70.

A great case study in broken software and the resulting attacks.
[Gollmann 1999] Dieter Gollmann. Computer Security. John Wiley & Sons,
New York, 1999.

Probably the best basic security book (textbook style) out there. Use this
to enhance Amoroso [1994]. By the way, we need a better basic com-
puter security book.

[Kahn 1996] David Kahn. The Code-Breakers (revised edition). Scribner,
New York, 1996.

A historically accurate treatment of cryptography. Long, interesting, and
worth slogging through.

[Kaner and Pels 1998] Cem Kaner and David Pels. Bad Software: What to
Do When Software Fails. John Wiley & Sons, New York, 1998.

Ever wonder whether those software licenses that you click on stand up
in court? This lawyer tells why they don’t.

[Knuth 1997] Donald Knuth. The Art of Computer Programming: Seminu-
merical Algorithms, 3rd Edition. Addison-Wesley, Reading, MA 1997.

Knuth; alpha geek. What, you don’t own this book and its two compan-
ions? For shame.

[Kocher 1999] Paul Kocher. “Differential Power Analysis,” Advances in
Cryptology—Crypto 99, Springer Lecture Notes in Computer Science, vol.
1666, 1999, pp. 388–397.

How smart cards leak critical security information through their power
consumption. This is a great study in thinking outside the box to break a
system.

Annotated Bibliography: An Emerging Literature 315

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 315

[Krusl 1998] Ivan Krsul. Software Vulnerability Analysis. Ph.D. Thesis, COAST
TR 98-09, Department of Computer Sciences, Purdue University, 1998.

This thesis is one of the first modern attempts at a computer security
vulnerability taxonomy.

[LaMacchia et al. 2002] Brian LaMacchia, Sebastian Lang, Matther Lyons,
Rui Martin, and Kevin Price. .NET Framework Security. Addison-Wesley,
Boston, MA, 2002.

From the guy who brought you .NET security. Good, but not very
clear.

[Maguire 1993] Steve Maguire. Writing Solid Code. Microsoft Press, Red-
mond, WA, 1993.

Too bad the Microsoft guys didn’t eat their own dog food in 1993! Get
this book. Internalize.

[McClure, Scambray, and Kurtz 1999] Stuart McClure, Joel Scambray, and
George Kurtz. Hacking Exposed: Network Security Secrets and Solutions.
Osborne, New York, 1999.

The now-classic script kiddie book explaining black hat computer secu-
rity to the masses. Not much software security in here, but an important
book nonetheless.

[McGraw 1999] Gary McGraw. “Software Assurance for Security,” IEEE
Computer 32(4), April 1999, pp. 103–105.

My first real paper on software security. This short article introduces the
idea of software risk management for security.

[Menezes, van Oorschot, and Vanstone 1997] Alfred Menezes, Paul van
Oorschot, and Scott Vanstone. Handbook of Applied Cryptography. CRC
Press, 1997. <http://www.cacr.math.uwaterloo.ca/hac/>

The best applied cryptography book. Written by hard-core crypto guys.
[Miller, Fredricksen, and So 1990] Barton Miller, Lars Fredricksen, and
Bryan So. “An Empirical Study of the Reliability of UNIX Utilities,” Com-
munications of the ACM 33(12), December 1990, pp. 32–44.

The first fuzz paper. See the second entry in the references cited for Soft-
ware Security earlier in this chapter.

[Necula and Lee 1998] George Necula and Peter Lee. “Safe, Untrusted
Agents Using Proof-Carrying Code,” Mobile Agents and Security, Springer
Lecture Notes in Computer Science, vol. 1419, 1998, pp. 61–91.

The seminal paper on proof-carrying code (also known as certified
code). This paper describes a system very much likely to be fielded in
the future.

[Neumann 1995] Peter Neumann. Computer-Related Risks. Addison-
Wesley, Reading, MA, 1995.

316 Chapter 13 Annotated Bibliography and References

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 316

From the comp.risks mailing list. This book explains (through a huge
number of examples) just how dependent we are on computer technol-
ogy and what can happen when it fails.

[Rivest, Shamir, and Adleman 1978] Ron Rivest, Adi Shamir, and Leonard
Adleman. “A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems,” Communications of the ACM 21(2), February 1978,
pp. 120–126.

RSA.
[Rubin 1999] Avi Rubin. The Whitehat Security Arsenal: Tackling the
Threats. Addison-Wesley, Reading, MA, 1999.

A good-guy book describing computer security basics. This book even
has white hats on its cover.

[Schmid and Ghosh 1999] Matt Schmid and Anup Ghosh. “An Approach to
Testing COTS Software for Robustness to Operating System Exceptions and
Errors,” 1999 International Symposium on Software Reliability Engineer-
ing, Boca Raton, FL, IEEE Reliability Society, November 1–4, 1999.

Software fault injection for COTS software.
[Schneider 1998] Fred Schneider, ed. Trust in Cyberspace. National Acad-
emy Press, Washington, DC, 1998.

Why computer security is essential.
[Schneier 1996] Bruce Schneier. Applied Cryptography. John Wiley & Sons,
New York, 1996.

Applied cryptography explained in layman’s terms.
[Schneier 2000] Bruce Schneier. Secrets and Lies. John Wiley & Sons, New
York, 2000.

A great read, this book is pithy and fun. Need some stories to scare the
pants off of upper management? Try this book.

[Thompson 1984] Ken Thompson. “Reflections on Trusting Trust,” Com-
munications of the ACM 27(8), August 1984, pp. 761–763. <http://www.
acm.org/classics/sep95/>

This classic paper goes well with Saltzer and Schroeder’s work on secu-
rity principles. Once again, a paper that everyone cites and all too few
read. Should you trust your C compiler? Probably not.

[Whittaker 2002] James Whittaker. How to Break Software: A Practical
Guide to Testing. Addison-Wesley, Boston, MA, 2002.

Whittaker’s first simple book on software testing. A good short read
filled with compelling ideas.

[Whitten 1999] Alma Whitten. “Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0,” Eighth USENIX Security Symposium, Washington,
DC, USENIX Association, 1999, pp. 169–183.

Annotated Bibliography: An Emerging Literature 317

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 317

A great paper on usability (and un-usability) in computer security
technology.

[Winkler 1997] Ira Winkler. Corporate Espionage. Prima Publishing, 1997.
Winkler’s excellent treatment of the insider problem makes this book
worth a read.

[Zuse 1991] Horst Zuse. Software Complexity: Measures and Methods
(Programming Complex Systems, No. 4). Walter de Gruyter, Inc., Berlin,
1991.

The ultimate software metrics tome. Also useful as a doorstopper for the
heaviest of doors.

Software Security Puzzle Pieces

As you can see by perusing the annotated references, software security exists
at the intersection of several disciplines. The following areas of interest are
focal points in the field of software security, both among practitioners and
among scientists.

• Reconciling security goals and software goals: software quality manage-
ment in commercial practice

• Security requirements engineering
• Design for security, software architecture, architectural analysis
• Security analysis, security testing, use of the Common Criteria
• Guiding principles for software security, case studies in design and

analysis, pedagogical approaches to teaching security architecture
• Software security education: educating students and commercial

developers
• Auditing software: implementation risks, architectural risks, automated

tools, technology developments (code scanning, information flow, and
so on)

• Common implementation risks: buffer overflows, race conditions, ran-
domness, authentication systems, access control, applied cryptography,
trust management

• Application security: protecting code postproduction, commercial
technologies

• Survivability and penetration resistance, type safety, dynamic policy
enforcement

• Denial-of-service protection for concurrent software
• Penetrate-and-patch as an approach to securing software

318 Chapter 13 Annotated Bibliography and References

32697 13 299-320 r7jk.ps 1/4/06 1:04 PM Page 318

